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ABSTRACT

Protein structures have been determined and deposited into Protein Data Bank at an in-

creasing rate. In this work, we organize all the protein structures in the PDB and form a wild

type and mutant structure database. The database groups the wild type and mutant structures

of the same protein together. One direct benefit of the database is thus the easy accessibility

of the structure ensembles of all the proteins. Such ensembles are known to be highly useful

for representing the native states of proteins and for understanding their functions. For each

protein, mutants are sorted by the number of mutations and the location(s) of the mutations.

What distinguishes our work from other mutation databases is that it is structure-based and

includes all the existing structures of the PDB. Synchronization with the PDB database will

be maintained. As an application, we carry out an experimental structure-based statistical

analysis of the effects of mutations, on both protein structure and protein dynamics. A key

question we address in this work is: is it valid to use mutant structures (or variants from dif-

ferent species) to represent a native state sample of a given protein? Our results indicate that

mutations can cause significant structure changes and dynamics changes, more than commonly

expected. This implies that cautions must be taken when mutation structures are considered

to be included as representative samples of the conformation space of a given protein.
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CHAPTER 1. INTRODUCTION

PDB [1] has over 120,000 structures. Among these the vast majority are proteins or protein

complexes. Only about 2.5% are DNA/RNA. About 90% of these structures are determined

by X-ray, 10% by NMR, and 1% by cryo-EM or other means. And more structures are being

deposited at an ever increasing rate. Many of these structures are of the same protein that has

already one or more structures deposited in PDB.

There exist many structures of the same protein and these structures form an ensemble

of the protein which can be used study dynamics that exists in the ensemble. Best et al. [2]

shows that some of these ensembles are able to reproduce different NMR measurements and

may represent the true native-state ensembles. Others [3, 4, 5, 6] showed that the dynamics

within the structure ensembles obtained by Principal Component Analysis(PCA) matches well

with the dynamics obtained by normal mode analysis [7, 8, 9].

Most of the existing structure determination methods solve for a single average structure.

However, during the last decade or so, there has been a lot of effort in determining protein

structure ensembles directly from experimental data. It was realized that a single structure

was not sufficient to satisfy all the experimental constraints observed. Attempts have been

made to determine an ensemble of two conformations or more [10, 11, 12]. The main challenge

for ensemble determination is overfitting. And there is no guarantee that the structures solved

represent the true native state ensemble even if they reproduce the observed dynamics well and

there is a lack of confidence in the quality of individual structures. Ways to reduce overfitting

were proposed [13, 14]. The abundance of structures in PDB provides an excellent alternative

for constructing structure ensembles, especially if the ensemble is able to reproduce well NMR

measurements.
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In this work, we organize all the protein structures in the PDB and form a wild type and

mutant structure database. The database groups the wild type and mutant structures of the

same protein together. A direct benefit of the database is the easy accessibility of the structure

ensembles of these proteins. Such ensembles are known to be highly useful for representing the

native states of proteins and for understanding their functions. For each protein, mutants are

sorted by the number of mutations and the location(s) of the mutations.

There are a number of databases available, as sequence and mutation data are useful in

analyzing evolutionary relationship between proteins. The protein mutant database (PMD) [15]

includes natural and artificial mutant proteins, which are taken from publications. M.Michael

et al. constructed proteins and mutants database for thermodynamic data (ProTherm) [16].

There are also several mutants database focused on structures and/or sequences of specific

proteins such as lipase [17], peptaibols [18] and GALT proteins [19]. However, no mutant

database is based on sequence and provides coverage of most of the proteins in protein data

bank. In this work, We collect all protein sequence similarity information from the protein

data bank and develop a wild type and mutant database. Its special features include: (i)

most proteins in the protein data bank are included; (ii) it clearly displays sequence difference

between the wild type and mutants of each protein; (iii) it provides a convenient accessing

point to all the existing structures for any given protein. We build a web page that shows the

mutation information on every protein entry. Also an investigation on how mutations affect

protein structure and dynamics is carried out. What further distinguishes our work from other

mutation databases is that it is structure-based and includes all the existing protein structure

of the PDB. Synchronization with the PDB database will be maintained.
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CHAPTER 2. MUTANTS DATABASE

2.1 Construction

There are currently over 120,000 entries in the Protein Data Bank [1] and about 97% are

protein structures. Many of these entries are structures of the same protein and thus are highly

similar or even identical in sequence. They represent structure mutants, variants from different

species, structures in complex with different ligands, or structures determined under different

experimental conditions. To group the structures by proteins, we use the clusters produced

by blastclust [20]. Blastclust can be run at different levels of sequence similarity. We use two

blastclust results: one at 100% sequence similarity and one at 95%. Both results are available

online at the PDB website. Each line of bc-100.out.txt lists PDB entries of the same sequence,

and each line in bc-95.out.txt lists sequences that are 95% similar. We use these two cluster

files to find wild types and mutants for each entry. The detailed procedures are given below.

1. We divide each entry of 95% cluster into sub clusters based on the 100% similarity clus-

ters(see Figure 2.1). Step one shows an entry of results at 95% sequence similarity corre-

sponds to two entries of results at 100% sequence similarity. Step two shows we compare

the sequences of two groups and form the mutation information..

2. We make the assumption that the sub cluster with the largest number of proteins and the

least number of mutation tags in each protein file is the wild type. Then we get sequences

for each sub cluster and compare them with the wild type to get the types and locations

of the point mutations. See Figure 2.1.

3. We retrieve protein names from the compound section (molecule name) inside each pdb

file. Protein size is the average number of residues within each sub cluster.
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Protein Type ChainNum#ProteinNum#MuTagNum PdbID_ChainId_MuTag 

WT 6#5#0 
1A2I_A_0  1GX7_E_0  2BPN_A_0  

2CTH_A_0 2CTH_B_0 2CYM_A_0 

F20L 2#1#1 1MDV_A_1 1MDV_B_1 

1A2I_A 1GX7_E 2BPN_A 2CTH_A 

2CTH_B 2CYM_A 

1A2I_A 1GX7_E 1MDV_A 1MDV_B 2BPN_A 2CTH_A 2CTH_B 2CYM_A 

1MDV_A 1MDV_B 

APKAPADGLKMEATKQPVVFNHSTHKSVKCGDC

HHPVNGKEDYRKCGTAGCHDSMDKKDKSAKGYY

HVMHDKNTKFKSCVGCHVEVAGADAAKKKDLTG

CKKSKCHE 

APKAPADGLKMEATKQPVVLNHSTHKSVKCGDC

HHPVNGKEDYRKCGTAGCHDSMDKKDKSAKGYY

HVMHDKNTKFKSCVGCHVEVAGADAAKKKDLTG

CKKSKCHE 

1 

2 

Figure 2.1: An illustration of how results from blustclust are used to identify and group protein

wild types and mutants.

4. We display the protein information in table format through the website using html and

sort them in descending order by the cluster size (i.e., the total number of wild type and

mutant structures). In the table we can see protein name, protein size, the number of

wild types and a list of their PDB-ids. mutants are sorted by single mutants, double

mutants, or multiple-point mutants. Mutation details for each mutant type are listed

and all the PDB ids are given and are hyper-linked to entries in Protein Data Bank.

Fig. 2.2 shows two example pages of the mutant structure database website. The index

page is shown in Fig. 2.2(a). There are 45 index pages, each of which has a table that con-

tains 1,000 rows and 9 columns. Each row contains information of a specific protein, including

protein name, protein size, the number of wild types, the number of mutants, single mutant

number, double mutant number, etc. The last column, details, once clicked, leads to a page
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about that protein with more details, an example of which is shown in Fig. 2.2(b). It dis-

plays a table that contains protein type, chain number, protein number, number of mutation

tags and pdbID chainID mutation tags. Click any of the pdbID chainID tags will lead to the

corresponding protein entry in the PDB website.

index1.html[9/13/2016 6:10:47 PM]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
ID Protein Name # Protein Size # Wildtypes # Mutants # Single point mutants # Double point mutants # Other mutants Files
1 LYSOZYME C 128 543 53 0 34 19  details
2 CARBONIC ANHYDRASE 2 257 358 187 37 89 61  details
3 HIV-1 PROTEASE 98 95 449 40 32 377  details
4 T4 LYSOZYME 162 54 482 20 127 335  details
5 PROTEIN (HUMAN BETA-2 MICROGLOBULIN) 99 483 29 14 5 10  details
6 CATIONIC TRYPSIN 222 364 59 0 1 58  details
7 CELL DIVISION PROTEIN KINASE 2 289 340 15 0 0 15  details
8 THROMBIN HEAVY CHAIN 251 268 83 14 4 65  details
9 BETA-SECRETASE 1 380 240 78 0 0 78  details
10 THROMBIN LIGHT CHAIN 29 312 1 1 0 0  details
11 INSULIN A CHAIN 20 214 40 0 14 26  details
12 INSULIN B CHAIN 28 192 59 0 0 59  details
13 UBIQUITIN 73 202 47 22 4 21  details
14 MYOGLOBIN 152 93 154 24 92 38  details
15 DNA POLYMERASE BETA 325 206 36 4 0 32  details
16 MITOGEN-ACTIVATED PROTEIN KINASE 14 337 152 75 6 0 69  details
17 HEMOGLOBIN (DEOXY) (BETA CHAIN) 145 147 77 24 48 5  details
18 HEMOGLOBIN SUBUNIT ALPHA 140 193 31 0 0 31  details
19 RIBONUCLEASE A 123 182 32 21 3 8  details
20 REVERSE TRANSCRIPTASE/RNASEH 529 60 149 0 0 149  details
21 LYSOZYME 130 43 162 135 9 18  details
22 CYTOCHROME C PEROXIDASE, MITOCHONDRIAL 292 21 184 21 14 149  details
23 P51 RT 405 56 147 0 0 147  details
24 TRANSTHYRETIN 115 128 75 14 34 27  details
25 DREIKLANG 231 3 196 0 0 196  details
26 PROTEIN (CLASS I HISTOCOMPATIBILITY ANTIGEN) 99 123 74 71 3 0  details

27 MHC CLASS I HISTOCOMPATIBILITY ANTIGEN (HLA-3 A*0201)
 (ALPHA CHAIN) 274 152 45 0 8 37  details

28 NITRIC-OXIDE SYNTHASE, BRAIN 409 154 42 13 14 15  details
29 HEAT SHOCK PROTEIN HSP 90-ALPHA 210 158 31 15 16 0  details
30 GLYCOGEN PHOSPHORYLASE, MUSCLE FORM 809 116 65 0 0 65  details
31 CAMP-DEPENDENT PROTEIN KINASE CATALYTIC SUBUNIT ALPHA 334 55 119 1 8 110  details
32 ALPHA ACTIN 367 117 45 0 1 44  details
33 PROTEASOME COMPONENT C7-ALPHA 246 155 0 0 0 0  details

(A)9/13/2016 101M_A76.html

file:///C:/Users/cez/Desktop/Database/HTML/101M_A76.html 1/2

Protein
Type ChainNum#ProteinNum#MuNum PdbID_ChainId_MuTag

WT 94#93#0

1UFP_A_0 2EB8_A_0 2EB9_A_0 2JHO_A_0 2W6W_A_0 3U3E_A_0 4NXA_A_0 4NXC_A_0 4PNJ_A_0 104M_A_0 105M_A_0 1AJG_A_0 1AJH_A_0 1BVC_A_0 1BVD_A_0
1BZ6_A_0 1BZP_A_0 1BZR_A_0 1CQ2_A_0 1DUK_A_0 1EBC_A_0 1F6H_A_0 1HJT_A_0 1IOP_A_0 1JP6_A_0 1JP8_A_0 1JP9_A_0 1JPB_A_0 1L2K_A_0 1MBC_A_0
1MBD_A_0 1MBI_A_0 1MBN_A_0 1MBO_A_0 1MYF_A_0 1SPE_A_0 1SWM_A_0 1U7R_A_0 1U7S_A_0 1VXA_A_0 1VXB_A_0 1VXC_A_0 1VXD_A_0 1VXE_A_0
1VXF_A_0 1VXG_A_0 1VXH_A_0 1WVP_A_0 1YOG_A_0 1YOH_A_0 1YOI_A_0 2CMM_A_0 2D6C_A_0 2D6C_B_0 2EKT_A_0 2EKU_A_0 2MB5_A_0 2MYA_A_0
2MYB_A_0 2MYC_A_0 2MYD_A_0 2MYE_A_0 2Z6S_A_0 2Z6T_A_0 2ZSN_A_0 2ZSO_A_0 2ZSP_A_0 2ZSQ_A_0 2ZSR_A_0 2ZSS_A_0 2ZST_A_0 2ZSX_A_0 2ZSY_A_0
2ZSZ_A_0 2ZT0_A_0 2ZT1_A_0 2ZT2_A_0 2ZT3_A_0 2ZT4_A_0 3E4N_A_0 3E55_A_0 3E5I_A_0 3E5O_A_0 3ECL_A_0 3ECX_A_0 3ECZ_A_0 3ED9_A_0 3EDA_A_0
3EDB_A_0 4MBN_A_0 5MBN_A_0 1A6K_A_0 1A6M_A_0 1A6N_A_0

D122N 14#14#8 109M_A_1 110M_A_1 111M_A_1 112M_A_1 1ABS_A_1 1J52_A_1 1JW8_A_0 1TES_A_1 2MBW_A_1 2MGK_A_0 2MGL_A_0 2MGM_A_0 3ASE_A_0 1A6G_A_0
G65T 3#3#3 4H07_A_1 4H0B_A_1 3O89_A_1
K102C 1#1#1 3A2G_A_1
L29H 1#1#1 4IT8_A_1
K42Y 1#1#1 4OOD_A_1
L29E 1#1#1 4PQ6_A_1
F43H 1#1#1 4PQC_A_1
F43Y 1#1#1 4QAU_A_1
K42N 1#1#1 4OF9_A_1
L29F
D122N 14#14#10 1JDO_A_1 1MOA_A_0 2G0R_A_1 2G0S_A_1 2G0V_A_1 2G0X_A_1 2G0Z_A_1 2G10_A_1 2G11_A_1 2G12_A_1 2G14_A_1 2SPL_A_0 2SPM_A_0 2SPN_A_0

L29W
D122N 10#10#10 1DO1_A_1 1DO3_A_1 1DO4_A_1 1DO7_A_1 1LTW_A_1 2BLH_A_1 2BLI_A_1 2BLJ_M_1 2BW9_M_1 2BWH_A_1

V68F
D122N 6#6#3 106M_A_1 107M_A_1 108M_A_1 1MLJ_A_0 1MLK_A_0 1MLL_A_0

H93G
DeG153 5#5#5 1IRC_A_1 1DTM_A_1 1DUO_A_1 2EVK_A_1 2EVP_A_1

F46V
D122N 4#4#3 101M_A_1 1MTJ_A_1 1MTK_A_1 1MYM_A_0

V68L
D122N 3#3#0 1MLQ_A_0 1MLR_A_0 1MLS_A_0

H64G
D122N 3#3#0 1MOB_A_0 2MGA_A_0 2MGB_A_0

H64T
D122N 3#3#0 1MOC_A_0 1MOD_A_0 2MGI_A_0

H64L
D122N 3#3#0 2MGC_A_0 2MGD_A_0 2MGE_A_0

H64Q
D122N 3#3#0 2MGF_A_0 2MGG_A_0 2MGH_A_0

V68A
D122N 3#3#0 1MLF_A_0 1MLG_A_0 1MLH_A_0

V68I
D122N 3#3#0 1MLM_A_0 1MLN_A_0 1MLO_A_0

H64W
D122N 2#2#2 3NML_A_1 3OGB_A_1

L29E
F43H 2#2#2 4PQB_A_1 3MN0_A_1

H64A
D122N 2#2#2 102M_A_1 103M_A_1

V68W
D122N 1#1#0 2OH9_A_0

D122N
F138W 1#1#0 2OHA_A_0

F46L
D122N 1#1#1 1MTI_A_1

I107W
D122N 1#1#0 2OHB_A_0

L29V
D122N 1#1#0 2SPO_A_0

G65I
DeG153 1#1#1 3SDN_A_1

L29H
F43Y 1#1#1 4LPI_A_1

I28W
D122N 1#1#0 2OH8_A_0

H64V
D122N 1#1#0 2MGJ_A_0

L29F
H64Q 1#1#1 1MCY_A_1

H97D
D122N 1#1#1 1DTI_A_1

L104W
D122N 1#1#1 1CPW_A_1

L104F
D122N 1#1#1 1CP5_A_1

L104N
D122N 1#1#1 1CP0_A_1

L104V
D122N 1#1#1 1CO9_A_1

L104A
D122N 1#1#1 1CO8_A_1

I99V
D122N 1#1#1 1CIO_A_1

I99A
D122N 1#1#1 1CIK_A_1

H97Q
D122N 1#1#1 1CH9_A_1

H97F
D122N 1#1#1 1CH7_A_1

H97V
D122N 1#1#1 1CH5_A_1

L89W
D122N 1#1#1 1CH3_A_1

L89F
D122N 1#1#1 1CH2_A_1

L89G
D122N 1#1#1 1CH1_A_1

H64Y
D122N 1#1#0 1MGN_A_0

L29H 1#1#1 4FWZ_A_1

(B)

Figure 2.2: Our wild type and mutant structure database. (A) the index page and (B) the

page of a given protein.

2.2 Statistics

Our mutant database contains 44,035 entries and 139,344 proteins (or structures). Table 2.1

shows the statistics on the number of wild type or mutant structures. The table shows that
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among all the proteins, over 1,000 have more than 10 wild type structures, over 500 have more

than 20 wild type structures, and so on.

Table 2.1: Some statistics of our mutant database.

Description statistics

number of proteins 44,305

number of proteins having > 100 WT 68 / 44,305

number of proteins having > 50 WT 146 / 44,305

number of proteins having > 20 WT 573 / 44,305

number of proteins having > 10 WT 1287 / 44,305

number of proteins having > 100 muts 17 / 44,305

number of proteins having > 50 muts 54 / 44,305

number of proteins having > 20 muts 218 / 44,305

number of proteins having > 10 muts 569 / 44,305

number of proteins having > 100 single point mutants 1 / 44,305

number of proteins having > 50 single point mutants 4 / 44,305

number of proteins having > 20 single point mutants 41 / 44,305

number of proteins having > 10 single point mutants 120 / 44,305

number of proteins having > 100 double points mutants 1 / 44,305

number of proteins having > 50 double points mutants 5 / 44,305

number of proteins having > 20 double points mutants 20 / 44,305

number of proteins having > 10 double points mutants 45 / 44,305

number of total wild type structures 109,485

number of total mutant structures 29,859

number of total single point mutant structures 6,391 / 29,859

number of total double point mutant structures 3,716 / 29,859

number of total >2 point mutant structures 19,752 / 29,859
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Fig 2.3 shows the distribution of the number of protein structures. In Fig 2.3(a), each point

represent a protein, with the abscissa and ordinate values being the total numbers of wild type

structures and mutant structures, respectively. Fig 2.3(b) shows that, for the proteins in our

database, histogram distributions by the number of wild type (blue) structures or mutant (red)

structures. In (a), each point represent a protein whose coordinates are the number of wild

type and mutant structures, respectively. (B) Histogram distributions of the proteins by the

number of wild type (blue) structures or mutant (red) structures. Both figures show that only

a small portion of total proteins have a large number of wild type and mutant structures.

(a) (b)

Figure 2.3: Distributions of number of wild type and mutant structures.

Table 2.2 shows 23 proteins that have more than 100 wild type or mutant structures in

our database. If one desires to obtain all the structures and their PDB-id’s for any of these

proteins, they can simply run a search with the given protein name, the database will bring

all the PDB entries of that protein. This feature can be helpful to those who are interested in

obtaining structure ensembles of PDB structures.
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Table 2.2: Protein samples having more than 100 wild type or mutant structures.

PROTEIN # WT # mut

LYSOZYME C 543 53

DNA POLYMERASE BETA 206 36

CARBONIC ANHYDRASE 2 358 187

MITOGEN-ACTIVATED PROTEIN KINASE 14 152 75

HIV-1 PROTEASE 95 449

HEMOGLOBIN (DEOXY) (BETA CHAIN) 147 77

T4 LYSOZYME 54 482

HEMOGLOBIN SUBUNIT ALPHA 193 31

BETA-2 MICROGLOBULIN (β) 483 29

RIBONUCLEASE A 182 32

CATIONIC TRYPSIN 364 59

REVERSE TRANSCRIPTASE/RNASEH 60 149

CELL DIVISION PROTEIN KINASE 2 340 15

THROMBIN HEAVY CHAIN 268 83

LYSOZYME 43 162

BETA-SECRETASE 1 240 78

INSULIN A CHAIN 214 40

CYTOCHROME C PEROXIDASE, MITOCHONDRIAL 21 184

INSULIN B CHAIN 192 59

P51 REVERSE TRANSCRIPTASE 56 147

UBIQUITIN 202 47

TRANSTHYRETIN 128 75

MYOGLOBIN 93 154
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CHAPTER 3. APPLICATION

Since there are a large number of wild type or mutant structures available for many of the

proteins in our database, we can carry out many statistical analysis of these structures. Here

we focus on the effects of mutations on protein structure and protein dynamics.

To this end, we analyze the differences between wild type ensembles and mutant ensembles

of a selected subset of proteins and use the differences to infer how mutations alter protein

structure and dynamics.

3.1 The Dataset

To have a statistically meaningful ensemble analysis, a subset of 559 protein are selected

from our mutant database. These proteins are selected since for each of them there exist at

least 15 wild type structures.

3.2 Methods

3.2.1 Structural alignment

Proteins are not static and fluctuate around their native states. The wildtype/mutant en-

semble of a protein represents the structure variations due to such fluctuations. Mutations may

cause a significant structure deviation to the protein. To see if this is true and to distinguish

structure changes caused by mutations from those naturally exist even among wild type struc-

tures due to protein fluctuations, we compare the structural variations in the wild type ensemble

and those in the mutant ensemble of the same protein. If mutation indeed causes a significant

structural change to a given protein, we should expect to see that structural variations of its

mutant ensemble are distinctly different from those of its wild type ensemble.
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To that end, we first carry out a structural alignment of all the wild type structures of all

the proteins in the data set. This is done as follows:

• Select one of the wild type structures. Align the rest of wildtype structure to it by ap-

plying the optimal rotation and translation that minimize the root mean square distance

(RMSD) [21].

• Compute the geometric average of all the aligned structures.

• Find the wild type structure that has the smallest RMSD distance to the geometric

average and label it as the reference structure.

• Align all wild type and mutant structures of the same protein to the reference structure

and get RMSD for each structure

• Compute the average RMSDs of wild type structures and mutant structures respectively.

3.2.2 Principal components analysis

Principal component analysis (PCA) is applied to wild type and mutant ensemble struc-

tures [3]. Before applying PCA to an ensemble, we first determine the reference structure and

align all the structures in the ensemble (see the last section).

For a protein with r residues, we can represent its r Cα atoms using a vector of length

3r. Assume for this protein, there are n structures. We can write down all the coordinate

information of these n structures together in a n by 3r coordinate matrix M. We then compute

the co-variance matrix Cij in the following manner:

Cij =< (Mi− < M >)(Mj− < M >) > (3.1)

Brackets <> represent the average of the n structures. We can decompose matrix C as:

C = E∆ET , (3.2)

where E are the eigenvectors, or the principle components (PCs). The diagonal matrix ∆

contains all the variances that correspond to the PCs.
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3.2.3 Overlaps between principal components

The first few principal components of an ensemble of protein structures represent the major

directions of variations or motions. When including mutants in a structure ensemble that is

initially composed of only wild type structures, the inclusion of new structures may alter the

dynamics represented by the ensemble. To characterize the effect of mutants on the dynamics,

we compute the principal components of motions of the ensemble before and after mutant

structures are included. We then compute the overlaps between the corresponding PCs to see

to what extent they have been altered.

The overlaps are defined simply as the dot product of the two PCs being compared. Let pi

and qi be the ith PCs of the ensemble before and after mutants are included in the ensemble.

overlapi = pi · qi. (3.3)

A perfect match between two principal components gives an overlap value of 1. The closer to

1 is the overlap, the better is the match.

3.3 Results

To determine if there is significant structural difference as a result of mutations, we compare

the structure ensemble of the wild types and the structure ensemble of the mutants for every

protein in the data set.

The wild type and mutant database created in this work provides a convenient access to all

the available experimental structures for any given protein. These structures of a given protein

form an ensemble of conformations that can better describe the native state of the protein than

any single structure itself. The ensembles can be used to better understand the native states

of proteins and protein functions. Since it includes all the protein structures in the PDB, some

systematic studies of all the ensembles may provide new insights. In this section, as one example

application, we will use the database to study the effect of mutations on protein structure. the

abundance of structure in the database allows us to carry out a statistical analysis of the effect

of mutations on structure, and to draw some conclusions about the effects of mutations based

solely on experimental structures.
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3.3.1 Effects of mutations on protein structure

Mutation in a protein may change the folded structure of the protein. Some mutant struc-

tures are significantly different from their corresponding wild type structures, while for the

other cases, the changes are insignificant. Fig. 3.1 shows the distribution of structure changes

by mutations. Fig. 3.1(a) contains 559 black and red points, each of which represents a protein

in our data set (see section 3.1). The average RMSDs of wild types and mutants of 559 proteins

are plotted as red and black points. For each point, the range of RMSD fluctuations of the

middle 80 percentiles of wild type (and mutant) structures is drawn as horizontal (and vertical)

gray line. Red points are the special cases in which the ranges of horizontal and vertical lines

do not overlap. For each dot (or protein), the abscissa is the average RMSD between the wild

type structures and their reference structure, representing the extent of structure fluctuations

within the wild type ensemble. The ordinate is the average RMSD between the mutant struc-

tures and their reference structure, representing the extent of structure fluctuations within the

mutant ensemble. Red points have a special meaning that will be discussed later. The horizon-

tal/vertical line (or error bar) crossing at each point represents the range of RMSD distribution

(again the RMSD is to the reference structure) of the wild type/mutant structures. The range

include the middle 80 percentiles only, excluding the extremes (the first and last 10 percentiles).

In the figure, most of points (433 over 559) are located above the diagonal line, implying that

mutations in general cause a larger structure deviation from the reference structure than what

exists in wild type structures.

The 126 points below the diagonal line indicate that the RMSD fluctuations of those proteins

are somewhat reduced by mutations. Possibly mutations strengthen some local interactions and

make the protein more stable. This implies that, in those cases, mutation suppresses protein

flexibility and mutant structures are less deviated from the reference structures than wild type

structures.
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Figure 3.1: Distribution of RMSDs between the reference and the rest of the wild type structures

(x-axis) and that between the reference and the rest of mutant structures (y-axis).

Some mutations seem to cause significantly large structural changes. In Fig. 3.1, 70 of total

559 points (each of which represents a protein) are colored red, for which proteins the range of

RMSD fluctuations (of the middle 80 percentiles) of mutant structures does not overlap with

that of wild type structures, indicating that the fluctuations within the wild type and mutant

protein structures are distinctly different.

Out of these 70 proteins, we select those that have five or more wild type and mutant

structures. This results in 17 proteins. Two more proteins are further removed since there

is only one mutation structure that is accessible under our current procedure. Table 3.1 lists
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these proteins: A. PROTEIN (TUBULIN); B. PROTEIN FARNESYLTRANSFERASE SUB-

UNIT BETA; C. DIHYDROFOLATE REDUCTASE; D. RIBONUCLEOTIDE REDUCTASE

R1 PROTEIN; E. CYTOCHROME C OXIDASE POLYPEPTIDE III; F. BETA-SECRETASE

1; G. PROTEIN (S15 RIBOSOMAL PROTEIN); H. TYROSINE-PROTEIN KINASE JAK2;

I. GUANINE NUCLEOTIDE-BINDING PROTEIN G(I)/G(S)/G(T) SUBUNIT0 BETA-1; J.

TUBULIN ALPHA-1D CHAIN; K. ALPHA ACTIN; L. TERMINAL OXYGENASE COMPO-

NENT OF CARBAZOLE; M. 30S RIBOSOMAL PROTEIN S6; N. REVERSE TRANSCRIP-

TASE/RNASEH; O. PROTO-ONCOGENE TYROSINE-PROTEIN KINASE SRC. Which

correspond to some red points in Fig. 3.1, implying the conformation spaces of mutants are

distinctive from (do not overlap with) those of wild types. For each protein, the number of

wild type and mutant conformations (or frames) are listed, along with the average (avg) RMSD

distances to the reference structures. The pairwise columns represent the mean pairwise RMSD

distances within the wildtype and mutant ensembles and that between the two ensembles. For

most of these proteins, the mean pairwise distances between wildtype and mutant structures

are greater, further confirming that their extents of fluctuations are different. We apply also the

ENCORE [22] method to compute the difference between the two sets of ensembles. However,

the ENCORE values do not seem to produce a reasonable measure of these ensembles and thus

are not included here.
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Table 3.1: Proteins whose mutant structures are different from the wild type structures.

NAME
wild types Between mutants

FrameNum Avg Pairwise Pairwise Pairwise FrameNum Avg

A 58 0.69 1.16 2.08 1.04 40 2.01

B 32 0.32 0.41 0.97 0.15 13 0.94

C 49 0.24 0.36 0.65 0.25 24 0.62

D 16 0.68 0.78 1.03 0.45 15 1.11

E 45 0.1 0.13 0.26 0.15 10 0.23

F 59 0.3 0.43 0.84 0.49 3 0.84

G 88 0.33 0.45 0.79 0.72 3 0.76

H 20 0.79 0.94 1.03 0.28 2 1.22

I 20 0.48 0.65 1.32 0.83 5 1.35

J 27 0.55 0.57 4.31 1.27 29 4.38

K 227 0.17 0.82 6.71 2.81 24 6.69

L 19 0.39 0.50 3.82 0.36 24 3.78

M 98 0.39 0.61 1.95 0.45 8 2.01

N 17 0.51 0.63 3.62 4.69 115 2.90

O 24 0.22 0.26 3.32 5.57 5 3.33

3.3.2 How mutation affects the entropy of a structure?

In this section, we will look into how mutations affect the flexibility of a structure. Does

mutation make a structure more flexible or less? To this end, we consider all the “red dot”

proteins in Figure 3.1 for which the RMSD fluctuations within the wild type structures and

those within the mutant structures are distinctly different. For each of these proteins, we

construct a wild type ensemble and a mutant ensemble. We compute the average entropy of

these ensembles in the following way. First, we estimate the mean-square fluctuations of each
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Figure 3.2: The mean entropy of the wild type ensembles and mutant ensembles.

residue by [23, 24]:

MSFi = 1/ni, (3.4)

where ni is the number of contacts that a residue has with its neighbors. A cutoff distance of

7.3 Å is used when determining if two residues, more precisely their Cα atoms, are in contact

(i.e., their separation is less than or equal to the cutoff distance). Once we have the mean square

fluctuations, the entropy of the whole structure is computed in the following manner [25],

S =
∑
i

MSFi (3.5)

The average entropy of an ensemble is then the mean value of the entropies of all the structures

in the ensemble.

Figure 3.2 shows a scatter plot of the mean entropy of the wild types and that of the

mutants. It shows most wild type structures have a lower entropy, which indicates they are

relatively more stable. In other words, most mutations destabilize the structures and make

them more flexible. However, some mutations seem to have a lower entropy, indicating they

become more rigid.

Since the mean values themselves are quite close and may not be enough to determine if

the entropy of wild type ensemble and mutant ensemble are distinctly different. We further

select a smaller set of proteins to see if their entropy distributions are different. To this end, we
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select those proteins whose wild type structures and mutant structures are both greater than

or equal to 20.

Figure 3.3 show the distribution plots of entropy for these six example proteins. It is seen

that for some of them, the distributions of the entropy are distinctly different, for some others,

the distribution are not separable.

(A) (B)

(C) (D)

(E) (F)

Figure 3.3: The entropy distributions of six proteins.
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3.3.3 How mutation affects protein dynamics

Ensembles are commonly used to represent protein conformation heterogeneity and protein

dynamics [10, 11, 12, 13, 14]. Best et al. [2] showed that the existing structures in PDB of

one protein can capture very well the dynamics of the protein. The principal motions that are

encoded in a protein ensemble has been shown to match well with the normal mode motions

computed by elastic network model [3]. Mutant structures are often assumed to have the same

protein dynamics as wild type structures. They are often mixed with wild type structure in

an ensemble, without making any distinction between the two groups. Part of the reason is

that there were not that many structures of any protein and a mutant has nearly an identical

sequence and it was assumed that mutant structure should have a similar dynamics as the wild

type.

The abundance of structures for both wild type and mutant in our data set makes it possible

for us to test if such an assumption is valid. That is, when using structures to represent protein

dynamics, is it OK to include mutation structures?

To this end, we divide the 559 proteins in our data set into six groups based on the percent-

age of mutant structures. The composition of six groups are: 1) the first set 100 proteins with

mutants ratio 0%-9%, 2) the second set 100 proteins with mutants ratio 9%-17.5%, 3) the third

100 proteins with mutants ratio 17.5%-27.2%, 4) the fourth 100 proteins with mutants ratio

27.2%-40%, 5) the fifth 100 proteins with mutants ratio 40%-59.2%, 6) the last 59 proteins

with mutants ratio 59.2%-88.6%.

For each protein in each group, to measure the extent to which principal motions of a

structure ensemble are affected by the amount of mutant structures present in the ensemble,

we compute the principal motions with (both wild types and mutants) and without the mu-

tants (wild types only) and then calculate the overlaps between the corresponding principal

components (i.e., PC1 vs. PC1, PC2 vs. PC2).

Fig. 3.4 shows how principal component 1 (PC1) and principal component 2 (PC2) are

affected when different percentages of mutants are present in the ensemble. Based on the

figure, the following observations are made:
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• At a low percentage, the overlap between PC1s are high, mostly 90% and above.

• As the percentage of mutants increases, the overlap deteriorates.

• For those proteins whose PC1 overlaps are greater than 0.9, we look at their PC2 overlaps.

First, at a low percentage (of mutants), PC2 matches well also (i.e., having a high overlap).

• At high percentage of mutants, not only does the number of proteins with high PC1

overlap decrease, even for those with high PC1 overlaps, PC2 overlap decreases as well.

These observations imply that the presence of a large percentage of mutants in the ensemble

may alter the dynamics represented by the ensemble.
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Figure 3.4: How principal components (PC1: left column, PC2: right column) are affected by

the inclusion of mutant structures in the ensembles? Different rows show the extent of changes

when different percentage of mutant structures are present in the ensembles.
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Figure 3.4: (continued)
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3.3.4 Validation

Realizing there is a possibility that the above result may be due not to the increasing per-

centage of mutants present in the ensemble, but to the increasing percentage of new structures

included into the ensemble, we carry out the following test.

We select 25 proteins that has the largest number of wild type and mutant conformations

(at least 84 wild type frames and 24 mutant frames).

For each of these proteins, we start a wild type ensemble using 50 randomly chosen wild

type structures. We then gradually add to this ensemble the same amount (10 conformations

at a time) of either more wild type structures or mutant structures, as long as there are still

structures left to be added. The above procedures are repeated 10 times and the results are

averaged. If the changes in PC overlaps seen in Figure 3.4 are purely because an increasing

amount of new structures are added to the ensemble and thus alter its dynamics, we should see

no difference, i.e., adding more wild type structures or mutant structures has a similar impact

on the original wild type ensemble. However, if dynamics is altered more significantly by the

inclusion of mutants, we should see a clear difference.



www.manaraa.com

22

(A) (B)

(C)

Figure 3.5: Mutants can have a much more pronounced impact on the dynamics of an ensemble.

Wild types and mutants of a protein share the same color but individually with sold line and

dashed line.

It is seen from Figure 3.5 that (A, B) For most proteins, when the same amount of

new structures (mutants or more wildtype structures) are included into a wild type ensemble,

the dynamics, here overlaps in the principal components, is altered (more) significantly when

mutants are included. (C) There exists a few cases where the mutants seem to have less effect.

Figure 3.5(A) contains the proteins for which the addition of mutants in the ensemble

greatly alter the first PC, as is shown in the significant decreases in overlap.

For the other proteins shown in Figure 3.5(B), the decrease in PC overlaps is smaller (all

the overlaps remain greater than 0.9), even though the addition of mutants still brings a larger

change to the principal components than the addition of the same number of wild types.
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Based on these observations, we would like to make the following recommendation regarding

including mutant structures in protein ensembles to represent protein dynamics.

Since a new structure, especially a mutant structure, has the potential to alter the dynamics

significantly, one should impose an overlap threshold to prevent the principal motions (PC1,

PC2, etc) from being altered too much. One can monitor how much the principal motions

(PC1, PC2 etc) are altered when a new structure is considered for inclusion and allow no

mutant structure to be added if it causes the principal motions to deviate from the original

principal motions beyond the given overlap threshold.
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CHAPTER 4. CONCLUSION

In this work we have developed a wild type and mutant structure database. Using data

from this database we have analyzed how sequence changes (mutations) affect protein structure

and dynamics.

In the future, we will study if excluding mutants in ensembles will produce a better match

between normal modes (such as those computed from ANM model [26]) and principal compo-

nents.
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